Tishk International University/Sulaimani Faculty of Engineering

Calculus I

TOPIC: Real Numbers

1st stage – Fall semester – 1st Lecture

Instructor:

Shamal F. Ahmed

Real Numbers

• **Real numbers** are used in everyday life to describe quantities such as age, miles per gallon, and population. Real numbers are represented by symbols such as

$$-5, 9, 0, \frac{4}{3}, 0.666 \dots$$
, 28.21, $\sqrt{2}, \pi$, and $\sqrt[3]{-32}$

• Here are some important subsets

$$\{1, 2, 3, 4, \dots\}$$
 Set of natural numbers
$$\{0, 1, 2, 3, 4, \dots\}$$
 Set of whole numbers
$$\{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$
 Set of integers

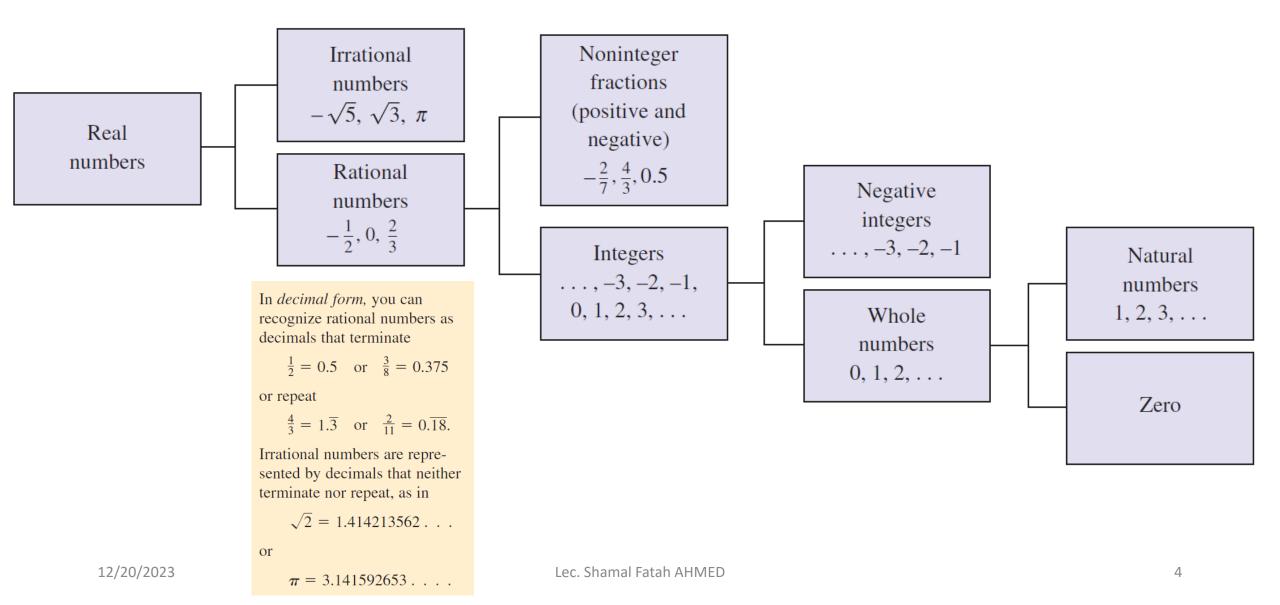
A real number is **rational** if it can be written as the ratio p/q of two integers, where $q \neq 0$. For instance, the numbers

$$\frac{1}{3} = 0.3333 \dots = 0.\overline{3}, \frac{1}{8} = 0.125, \text{ and } \frac{125}{111} = 1.126126 \dots = 1.\overline{126}$$

A real number that cannot be written as the ratio of two integers is called **irrational**. Irrational numbers have infinite nonrepeating decimal representations. For instance, the numbers are irrational. (The symbol \approx means "is approximately equal to.")

 $\sqrt{2} = 1.4142135... \approx 1.41$ and $\pi = 3.1415926... \approx 3.14$

Next Figure shows subsets of real numbers and their relationships to each other.



Example: Classifying Real Numbers

Determine which numbers in the set

$$\left\{-13, -\sqrt{5}, -1, -\frac{1}{3}, 0, \frac{5}{8}, \sqrt{2}, \pi, 7\right\}$$

are (a) natural numbers, (b) whole numbers, (c) integers, (d) rational numbers, and (e) irrational numbers.

Solution

- **a.** Natural numbers: $\{7\}$
- **b.** Whole numbers: $\{0, 7\}$
- c. Integers: $\{-13, -1, 0, 7\}$ d. Rational numbers: $\{-13, -1, -\frac{1}{3}, 0, \frac{5}{8}, 7\}$ e. Irrational numbers: $\{-\sqrt{5}, \sqrt{2}, \pi\}$

- Example:
- Which of the numbers in the following set are (a) natural numbers, (b) integers, (c) rational numbers, and (d) irrational numbers?

$$\left\{\frac{1}{2}, -1, 0, 4, -\frac{5}{8}, \frac{4}{2}, -\frac{3}{1}, 0.86, \sqrt{2}, \sqrt{9}\right\}$$

• Class Work: Determine which numbers in the set are

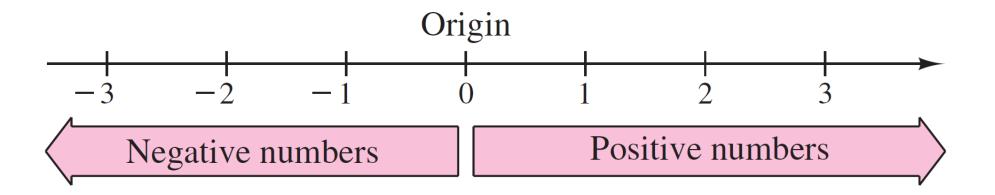
(a) natural numbers, (b) whole numbers, (c) integers, (d) rational numbers, and (e) irrational numbers.

1.
$$\left\{-9, -\frac{7}{2}, 5, \frac{2}{3}, \sqrt{2}, 0, 1, -4, 2, -11\right\}$$

2. $\left\{\sqrt{5}, -7, -\frac{7}{3}, 0, 3.12, \frac{5}{4}, -3, 12, 5\right\}$
3. $\left\{2.01, 0.666 \dots, -13, 0.010110111 \dots, 1, -6\right\}$
4. $\left\{2.3030030003 \dots, 0.7575, -4.63, \sqrt{10}, -75, 4\right\}$
5. $\left\{-\pi, -\frac{1}{3}, \frac{6}{3}, \frac{1}{2}\sqrt{2}, -7.5, -1, 8, -22\right\}$
6. $\left\{25, -17, -\frac{12}{5}, \sqrt{9}, 3.12, \frac{1}{2}\pi, 7, -11.1, 13\right\}$

The Real Number Line

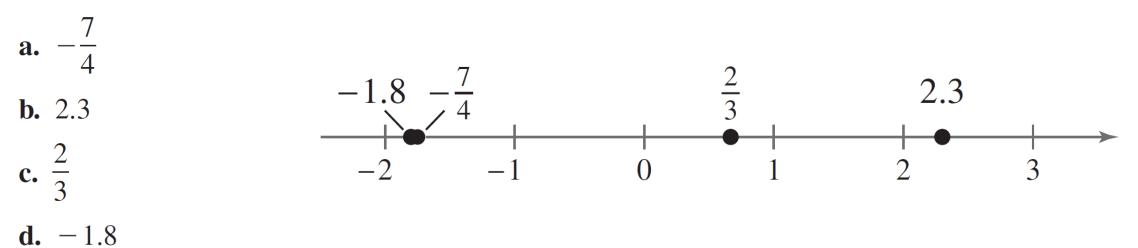
- The diagram used to represent the real numbers is called the **real number line**. It consists of a horizontal line with a point (the **origin**) labeled 0.
- Numbers to the left of 0 are **negative** and numbers to the right of 0 are **positive**, as shown in Figure.
- The real number zero is neither positive nor negative. So, the term **nonnegative** implies that a number may be positive or zero.



Plotting Real Numbers

- Drawing the point on the real number line that corresponds to a real number is called **plotting** the real number.
- Each point on the real number line corresponds to exactly one real number, and each real number corresponds to exactly one point on the real number line.
- Example:

• Example: Plot the real numbers on the real number line:



- **a.** The point representing the real number $-\frac{7}{4} = -1.75$ lies between -2 and -1, but closer to -2, on the real number line.
- **b.** The point representing the real number 2.3 lies between 2 and 3, but closer to 2, on the real number line.
- **c.** The point representing the real number $\frac{2}{3} = 0.666$. . . lies between 0 and 1, but closer to 1, on the real number line.
- **d.** The point representing the real number -1.8 lies between -2 and -1, but closer to -2, on the real number line. Note that the point representing -1.8 lies slightly to the left of the point representing $-\frac{7}{4ec. Shamal Fatah AHMED}$

10

Example:

• plot the real numbers on the real number line.

(a) 3 (b)
$$\frac{7}{2}$$
 (c) $-\frac{5}{2}$ (d) -5.2

- Class work:
- plot the real numbers on the real number line.

(a) 8.5 (b)
$$\frac{4}{3}$$
 (c) -4.75 (d) $-\frac{8}{3}$

Ordering Real Numbers

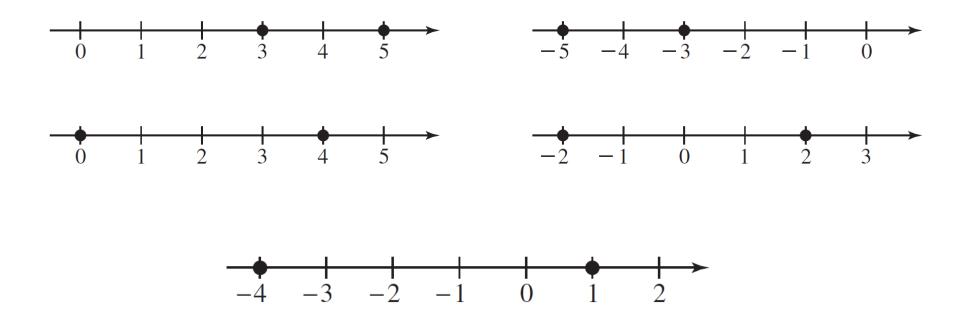
Definition of Order on the Real Number Line

If *a* and *b* are real numbers, *a* is less than *b* if b - a is positive. The **order** of *a* and *b* is denoted by the **inequality** a < b. This relationship can also be described by saying that *b* is *greater than a* and writing b > a. The inequality $a \le b$ means that *a* is *less than or equal to b*, and the inequality $b \ge a$ means that *b* is *greater than or equal to b*, and the inequality $b \ge a$ means that *b* is *greater than or equal to b*, and the inequality $b \ge a$ means that *b* is *greater than or equal to b*, and the inequality $b \ge a$ means that *b* is *greater than or equal to b*, and the inequality *b* is *greater than b* is *greater than or equal to b*.

Geometrically, this definition implies that a < b if and only if a lies to the *left* of b on the real number line

Example:

- **a.** 3 < 5, because 3 lies to the *left* of 5.
- **b.** -3 > -5, because -3 lies to the *right* of -5.
- **c.** 4 > 0, because 4 lies to the *right* of 0.
- **d.** -2 < 2, because -2 lies to the *left* of 2.
- e. 1 > -4, because 1 lies to the *right* of -4.



Intervals on the Real Number Line

- There are two types:
- Open interval:
- If *a* < *b*, then the **open interval** from *a* to *b* consists

of all numbers between a and b and is denoted (a, b).

- Endpoints are **excluded** from the interval
- Closed interval:
- from *a* to *b* includes the endpoints and

is denoted [a, b].

• Using set-builder notation, we can write

$$(a,b) = \{x \mid a < x < b\} \qquad [a,b] = \{x \mid a \le x \le b\}$$

Bounded Intervals on the Real Number Line

Notation	Interval Type	Inequality	Graph
[a,b]	Closed	$a \leq x \leq b$	a b x
(a, b)	Open	a < x < b	a b x
[a,b)		$a \leq x < b$	a b x
(a, b]		$a < x \leq b$	a b x

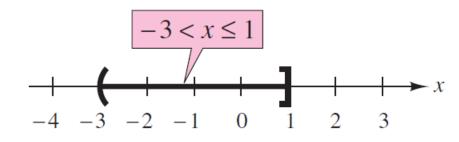
Unbounded Intervals on the Real Number Line

The symbols ∞ , **positive infinity**, and $-\infty$, **negative infinity**, do not represent real numbers. They are simply convenient symbols used to describe the unboundedness of an interval such as $(1, \infty)$ or $(-\infty, 3]$.

WARNING / CAUTION Whenever you write an interval	Notation $[a, \infty)$	Interval Type	Inequality $x \ge a$	$Graph \\ x$
containing ∞ or $-\infty$, always use a parenthesis and never a bracket. This is because ∞ and	(a,∞)	Open	x > a	$a \xrightarrow{a} x$
$-\infty$ are never an endpoint of an interval and therefore are not included in the interval.	$(-\infty, b]$		$x \leq b$	$\xrightarrow{b} x$
	$(-\infty, b)$	Open	x < b	$\xrightarrow{b} x$
12/20/2023	$(-\infty,\infty)$	Entire real line Lec. Shamal Fatah AHMED	$-\infty < x < \infty$	→ <i>x</i> 16

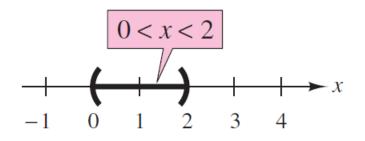
Graphs of Inequalities

- Example:
- Sketch the graph of each inequality.
 - **a.** The graph of $-3 < x \le 1$ is a bounded interval.



c. The graph of -3 < x is an unbounded interval.

b. The graph of 0 < x < 2 is a bounded interval.



d. The graph of $x \le 2$ is an unbounded interval.

