
Java &
Exception Handling

Computer Engineering

Yusramohammed@tiu.edu.iq

2022 - 2023

mailto:Yusramohammed@tiu.edu.iq

What is Exception?

• When executing Java code, different errors can occur: coding errors made by the programmer, errors due
to wrong input, or other unforeseeable things.

• When an error occurs, Java will normally stop and generate an error message. The technical term for this is:
Java will throw an exception (throw an error).

• An exception (or exceptional event) is a problem that arises during the execution of a program.

• An exception can occur for many different reasons. Following are some scenarios where an exception
occurs.

• Invalid user input

• Device failure

• Loss of network connection

• Physical limitations (out of disk memory)

• Code errors

• Opening an unavailable file

• Some of these exceptions are caused by user error, others by programmer error, and others by physical
resources that have failed in some manner.

JVM Error vs. Exception

• Error: An Error indicates a serious problem that a reasonable application should not try to catch. conditions
such as Java virtual machine (JVM) running out of memory, memory leaks, stack overflow errors, library
incompatibility, infinite recursion, etc.

• Exception: Exception indicates conditions that a reasonable application might try to catch.

Types of Exceptions

What is Exception Handling?

• Exception Handling is a mechanism to handle runtime errors such as ClassNotFoundException, IOException,
SQLException, RemoteException, etc.

• Arethmatic Exception Example:

• IOException Example:

Catching Exceptions

• A method catches an exception using a combination of the try and catch keywords.

• Code within a try/catch block is referred

to as protected code, and the syntax

for using try/catch looks like→

• The code which is seems to have exceptions is placed in the try block. When an exception occurs, that
exception occurred is handled by catch block associated with it.

• Every try block should be immediately followed either by a catch block or finally block.

• A catch statement involves declaring the type of exception you are trying to catch.

Catching Exceptions

Example without try-catch

• Without try catch if the program got an error at run time. It will stop running and shows the error for
example:

• We have an array of 5 indices and we want to give a
value of index 6

• The user enters a number and we give it to
the index 0.

Example using try-catch

• Using a try-catch

• Using a try-catch

Output and see the differences

• Without using try-catch the program will see the error and stops running, the run of the program will be:

• Using try-catch: The program catch the error, shows the error in the run, and continue running. It will not
stop.

Common Scenario of Java Exceptions

• ArithmeticException: If we divide any number by zero, there occurs an ArithmeticException.

Common Scenario of Java Exceptions

• NumberFormatException: The wrong formatting of any value may occur NumberFormatException.
Suppose I have a string variable that has characters, converting this variable into digit will occur
NumberFormatException.

Run

Common Scenario of Java Exceptions

• InputMismatchException: For example we want the user to enter an integer, and the user enters a
different type of input:

Sample Development

Sample Development (Run)

• Now remove the try-catch and run the
program to see the difference.

	Slide 1: Java & Exception Handling
	Slide 2: What is Exception?
	Slide 3: JVM Error vs. Exception
	Slide 4: Types of Exceptions
	Slide 5: What is Exception Handling?
	Slide 6: Catching Exceptions
	Slide 7: Catching Exceptions
	Slide 8: Example without try-catch
	Slide 9: Example using try-catch
	Slide 10: Output and see the differences
	Slide 11: Common Scenario of Java Exceptions
	Slide 12: Common Scenario of Java Exceptions
	Slide 13: Common Scenario of Java Exceptions
	Slide 14: Sample Development
	Slide 15: Sample Development (Run)

